## Probability

## Example

1. Suppose that the probability density function $P$ that an atom emits a gamma wave satisfies the following differential equation $P^{\prime}=-10 P$ for $t \geq 0$ and $P(t)=0$ for $t<0$. Find $P$ and calculate the CDF associated with $P$.

Solution: We solve the differential equation for $P$. We have that

$$
\int \frac{d P}{P}=\int-10 d t \Longrightarrow \ln P=-10 t+C \Longrightarrow P=C e^{-10 t}
$$

Now in order for this to be a PDF, we need its integral to be 1 . Thus, we have that

$$
\int_{-\infty}^{\infty} P(t)=\int_{0}^{\infty} C e^{-10 t}=\left.\frac{-C e^{-10 t}}{10}\right|_{0} ^{\infty}=\frac{C}{10} .
$$

Hence $C=10$ and $P(t)=10 e^{-10 t}$.
To find the CDF, we take the integral, for $t \geq 0$, we have that

$$
F(t)=\int_{-\infty}^{t} 10 e^{-10 t}=\int_{0}^{t} 10 e^{-10 t}=-\left.e^{-10 t}\right|_{0} ^{t}=1-e^{-10 t} .
$$

2. For the above PDF, find the probability that a gamma wave is emitted from -1 seconds to 1 second.

Solution: This is just the integral from -1 to 1 . But, the probability is 0 from -1 to 0 so we just need to compute $P(0 \leq X \leq 1)$ which is

$$
\int_{0}^{1} P(t) d t=F(1)=1-e^{-10}
$$

## Problems

3. True FALSE Since the CDF is an antiderivative of the PDF, there are multiple CDFs for a given PDF (and they differ by a $+C$ ).

Solution: We choose the CDF that gives us $F(-\infty)=0$, which is like an initial condition and fixes the antiderivative.
4. True FALSE The area underneath a CDF must be equal to 1.

Solution: There is no such requirement on the CDF, and in fact, the area will actually diverge.
5. True FALSE A PDF must be continuous.

Solution: This is false. Look at the example above for a counterexample.
6. True FALSE Let $P(x)=C x^{3}$ for $-1 \leq x \leq 2$ and 0 otherwise. Since $\int_{-1}^{3} P(x) d x=$ $C(16-1 / 4)$, setting $C=(16-1 / 4)^{-1}$ makes $P$ into a PDF.

Solution: $P$ cannot possibly be a PDF because it is negative at some places.
7. Let $P(x)=C x^{2}(10-x)$ on $0 \leq x \leq 10$ and 0 otherwise. Find $C$ such that $P$ is a PDF and its corresponding CDF. Find the probability that we choose a number between 0 and 1.

Solution: In order for $P$ to be a PDF, it needs to have integral 1. So

$$
\int_{-\infty}^{\infty} P(x) d x=\int_{0}^{10} C x^{2}(10-x) d x=\frac{2500 C}{3}
$$

Hence, we have that $C=\frac{3}{2500}$.
The CDF is the integral

$$
\int_{-\infty}^{x} P(t) d t=\int_{0}^{x} \frac{3 t^{2}(10-t)}{2500}=\frac{(40-3 x) x^{3}}{10000}
$$

for $0 \leq x \leq 10$ and 0 for $x \leq 0$ and 1 for $x \geq 10$.
The probability that we choose a number between 0 and 1 is just the integral

$$
\int_{0}^{1} P(x) d x=\int_{0}^{1} \frac{3 x^{2}(10-x)}{2500} d x=\frac{37}{10000}=0.37 \% .
$$

8. Let $P(x)=C(x-1)(x+1)$ on $-1 \leq x \leq 1$ and 0 otherwise. Find $C$ such that $P$ is a PDF and its corresponding CDF. Find the probability that we choose a number between 0 and 1.

Solution: We need

$$
\int_{-\infty}^{\infty} P(x) d x=\int_{-1}^{1} C(x-1)(x+1) d x=\frac{-4}{3} C=1 .
$$

Hence $C=\frac{-3}{4}$. The CDF is

$$
F(x)=\int_{-\infty}^{x} P(t) d t=\int_{-1}^{x}-3 / 4(t-1)(t+1) d t=\frac{-x^{3}+3 x+2}{4}
$$

for $-1 \leq x \leq 1$ and 0 for $x \leq-1$ and 1 for $x \geq 1$.
The probability that we choose a number between 0 and 1 is

$$
F(1)-F(0)=\int_{0}^{1} P(x) d x=\int_{0}^{1}-3 / 4(x-1)(x+1) d x=\frac{1}{2} .
$$

9. Let $P(x)$ satisfy $\frac{d P}{d x}=2 x$ for $0 \leq x \leq 1$ and $P(x)=0$ otherwise. Find $P$ such that it is a PDF and its corresponding CDF. Find the probability that we choose a number between 0 and 1 .

Solution: We have that $P(x)=x^{2}+C$ for $0 \leq x \leq 2$ and for this to be a PDF, we require that

$$
\int_{-\infty}^{\infty} P(x) d x=\int_{0}^{1} x^{2}+C d x=\frac{1}{3}+C=1
$$

Hence $C=\frac{2}{3}$. The CDF is

$$
F(x)=\int_{-\infty}^{x} P(t) d t=\frac{x\left(x^{2}+2\right)}{3}
$$

for $0 \leq x \leq 1$ and 0 for $x \leq 0$ and 1 for $x \geq 1$.
The probability that we choose a number between 0 and 1 is 1 because our PDF is only between 0 and 1 .
10. Let $F(x)=\frac{x-1}{x+1}$ for $x \geq 1$ and 0 for $x \leq 1$. Show that $F$ is a CDF. Find the PDF associated with it and the probability that we choose a number between 1 and 2 .

Solution: This is a CDF because it is continuous since $F(1)=0$ and $\lim _{x \rightarrow \infty} F(x)=$ 1 and $F$ is non-decreasing. The PDF is

$$
f(x)=\frac{d}{d x} F(x)=\frac{2}{(x+1)^{2}}
$$

for $x \geq 1$ and 0 for $x \leq 1$. The probability that we choose a number between 1 and 2 is

$$
\int_{1}^{2} f(x) d x=F(2)-F(1)=\frac{1}{3}
$$

11. Find numbers $A, B$ such that $A \arctan (x)+B$ is a CDF and find the PDF associated with it. Find the probability that we choose a number between 0 and 1.

Solution: We know that $\arctan (x)$ is nondecreasing and all we need is for the range to be $(0,1)$. The original range is $(-\pi / 2, \pi / 2)$ and so letting $A=1 / \pi$ changes our range to $(-1 / 2,1 / 2)$, and shifting up by $B=1 / 2$ gives a range of $(0,1)$. Thus, we have that $A=\frac{1}{\pi}$ and $B=\frac{1}{2}$. The PDF is

$$
f(x)=\frac{d}{d x} F(x)=\frac{1}{\pi+\pi x^{2}} .
$$

The probability that we choose a number between 0 and 1 is

$$
\int_{0}^{1} f(x) d x=F(1)-F(0)=\frac{3}{4}-\frac{1}{2}=\frac{1}{4} .
$$

12. Let $F(x)=\ln x$ for $1 \leq x \leq a$ and $F(x)=0$ for $x \leq 1$ and $F(x)=1$ for $x \geq a$. Find $a$ such that $F$ is a continuous CDF and find the PDF associated with it. Find the probability that we choose a number between 1 and 2 .

Solution: In order for this to be a CDF, we require need this to be nondecreasing so $a$ is such that $\ln (a)=1$ or $a=e$. The PDF is the derivative so $f(x)=\frac{1}{x}$ between 1 and $e$ and equal to 0 otherwise. The probability that we choose a number between 1 and 2 is $\ln (2)-\ln 1=\ln 2$.

## Logistic Growth

## Example

13. The rate of growth of a population is logistic with an intrinsic rate of growth of $r=10$ and a carrying capacity of 1000 . Write this down as a differential equation. Solve for the population if the initial population is 100 .

Solution: This is written as

$$
\frac{d P}{d t}=r P(1-P / K)=10 P(1-P / 1000)
$$

The solution is given as

$$
P(t)=\frac{K}{1+C e^{-r t}}=\frac{1000}{1+C e^{-10 t}} .
$$

If the initial population is 100 , then we have that

$$
P(0)=100=\frac{1000}{1+C e^{0}}=\frac{1000}{1+C} .
$$

Therefore, we have that $1+C=10$ and $C=9$. So

$$
P(t)=\frac{1000}{1+9 e^{-10 t}} .
$$

## Problems

14. The rate of growth of a population is logistic with an intrinsic rate of growth of $r=10$ and a carrying capacity of 1000 . Assume that the population is harvested at a rate proportional to its population with a constant of proportionality of 5 . Write this down as a differential equation. What is the fate of the population for different initial sizes?

Solution: We have that

$$
\frac{d P}{d t}=10 P(1-P / 1000)-5 P=5 x-x^{2} / 100=x / 100(500-x) .
$$

Thus, for all populations $x>0$, the population will go towards 500 , which is stable. The population 0 is unstable.
15. The rate of growth of a population is logistic with an intrinsic rate of growth of $r=10$ and a carrying capacity of 1000 . Assume that the population is harvested at a rate proportional to its population with a constant of proportionality of 10 . Write this down as a differential equation. What is the fate of the population for different initial sizes?

Solution: We have that

$$
\frac{d P}{d t}=10 P(1-P / 1000)-10 P=-x^{2} / 100 .
$$

Thus, for all populations $x \geq 0$, the population will go towards 0 , and 0 is semistable.
16. The rate of growth of a population is logistic with an intrinsic rate of growth of $r=10$ and a carrying capacity of 1000 . Assume that the population is harvested at a rate proportional to its population with a constant of proportionality of 15 . Write this down as a differential equation. What is the fate of the population for different initial sizes?

Solution: We have that

$$
\frac{d P}{d t}=10 P(1-P / 1000)-15 P=-5 x-x^{2} / 100=-x / 100(500+x)
$$

Thus, for all populations $x \geq 0$, the population will go towards 0 , which is stable. The population -500 (which doesn't make sense in this model) is unstable.
17. The rate of growth of a population is logistic with an intrinsic rate of growth of $r=10$ and a carrying capacity of 1000 . Assume that 2100 individuals are killed every year. Write this down as a differential equation. What is the fate of the population for different initial sizes?

Solution: We have that
$\frac{d P}{d t}=10 P(1-P / 1000)-2100=10 x-x^{2} / 100-2100=-1 / 100(x-300)(x-700)$.
Thus, for all populations $x>300$, the population will go towards 700 , which is stable. For populations $<300$, the population will go to extinction and 300 is unstable.
18. The rate of growth of a population is logistic with an intrinsic rate of growth of $r=10$ and a carrying capacity of 1000 . Assume that 2500 individuals are killed every year. Write this down as a differential equation. What is the fate of the population for different initial sizes?

Solution: We have that

$$
\frac{d P}{d t}=10 P(1-P / 1000)-2500=10 x-x^{2} / 100-2100=-1 / 100(x-500)^{2}
$$

Thus, for all populations $x \geq 500$, the population will go towards 500 , which is semistable. For populations $<500$, the population will go to extinction.
19. The rate of growth of a population is logistic with an intrinsic rate of growth of $r=10$ and a carrying capacity of 1000. Assume that 2900 individuals are killed every year. Write this down as a differential equation. What is the fate of the population for different initial sizes?

Solution: We have that

$$
\frac{d P}{d t}=10 P(1-P / 1000)-2900=10 x-x^{2} / 100-2100=-1 / 100(x-500)^{2}-400
$$

Thus, for all populations, the population will go to extinction and there is no way for this population to survive.

